
Proceedings of Machine Learning Research 273:1–9, 2025 iRAISE workshop

Assessing Large Language Models for Automated Feedback
Generation in Learning Programming Problem Solving

Priscylla Silva priscylla.silva@usp.br
Universidade de São Paulo and Instituto Federal de Alagoas

Evandro Costa evandro@ic.ufal.br

Universidade Federal de Alagoas

Abstract

Providing effective feedback is important for student learning in programming problem-
solving. In this sense, Large Language Models (LLMs) have emerged as potential tools to
automate feedback generation. However, their reliability and ability to identify reasoning
errors in student code remain not well understood. This study evaluates the performance
of four LLMs (GPT-4o, GPT-4o mini, GPT-4-Turbo, and Gemini-1.5-pro) on a benchmark
dataset of 45 student solutions. We assessed the models’ capacity to provide accurate and
insightful feedback, particularly in identifying reasoning mistakes. Our analysis reveals
that 63% of feedback hints were accurate and complete, while 37% contained mistakes,
including incorrect line identification, flawed explanations, or hallucinated issues. These
findings highlight the potential and limitations of LLMs in programming education and un-
derscore the need for improvements to enhance reliability and minimize risks in educational
applications.

Keywords: Programming Education, Large Language Models, Automated Feedback, Au-
tomated Assessment

1. Introduction

Despite its foundational role in computing education, computer programming remains a
difficult subject for many learners. Programming courses often enroll large numbers of stu-
dents, making it difficult for instructors to offer timely and personalized feedback. This feed-
back is crucial for helping learners understand complex concepts, correct misconceptions,
and develop problem-solving skills. However, generating such feedback for programming as-
signments are particularly demanding. Instructors must evaluate whether a solution meets
the problem’s requirements, understand the student’s thought process, identify errors, and
communicate guidance to foster reflection and learning (Silva et al., 2019).

Automated feedback systems have emerged as a solution to address the challenges of
assessing student submissions. Traditional tools typically rely on predefined rules or rigid
evaluation frameworks (Deeva et al., 2021). While these methods can be effective in spe-
cific contexts, they lack the flexibility to provide individualized and context-aware feed-
back (Maier and Klotz, 2022). Recent studies have demonstrated that large language mod-
els (LLMs) can be used to overcome this limitation by providing natural student feedback
that adapts to each student’s specific needs (Kiesler et al., 2023).

However, using LLMs in educational contexts raises significant concerns. Tyen et al.
(2024) show that LLMs struggle with reasoning tasks, such as accurately following the step-
by-step resolution of arithmetic expressions. These models show less than 50% accuracy in

© 2025 P. Silva & E. Costa.



Silva Costa

both arithmetic and logical deduction tasks, particularly in identifying and correcting er-
rors, as they often fail to indicate the specific step where a mistake occurred. Furthermore,
large language models (LLMs) are susceptible to generating hallucinations or providing
misleading information, which may frustrate students and interfere with the learning pro-
cess (Jukiewicz, 2024). Such inaccuracies are particularly concerning in education, where
trust and reliability are paramount.

In this work, we address these challenges by providing a systematic evaluation of four
different LLMs (GPT-4o, GPT-4o-mini, GPT-4-Turbo, and Gemini-1.5-pro) on their abil-
ity to generate accurate and meaningful feedback for programming assignments. Unlike
prior studies that typically focus on a single LLM, Our comparative analysis highlights
the different capabilities and limitations of multiple LLMs. To ensure reproducibility, we
contribute a benchmark dataset based on real-world student submissions from introductory
programming courses, making it publicly available to foster further research in this area.

In summary, the main contributions of this work are:

1. A evaluation of four LLMs in generating feedback for programming assignments, fo-
cusing on their ability to identify and explain student mistakes;

2. A publicly available benchmark dataset of annotated student code submissions, facil-
itating future research on automated feedback systems.

2. Related Work

Evaluating Feedback Generated by LLMs in Programming Tasks. Pankiewicz and
Baker (2023) used GPT-3.5 to provide hints to students upon request during programming
tasks when errors such as compilation failures, runtime issues, or unit test failures were iden-
tified. Their approach used prompts that included the problem description, student code,
and error details. Feedback usefulness was evaluated based on student opinions using a Lik-
ert scale. However, the study did not assess whether the feedback correctly aligned with the
problem requirements or addressed issues such as hallucinations or logical inconsistencies.

Azaiz et al. (2024) examined GPT-4 Turbo for feedback generation on 55 solutions to
two programming assignments. They reported feedback accuracy rates of 75% to 95% in
determining the correctness of solutions but noted that 22% of the feedback was inconsistent
or incorrect. Similarly, Roest et al. (2024) evaluated GPT-3.5 Turbo for real-time hint
generation during students’ problem-solving processes. Experts reviewed 48 hints and found
that 33% contained misleading information. Jacobs and Jaschke (2024) employed GPT-4
to generate feedback using task specifications, student code, compiler output, and unit
test results. Expert evaluation of 137 feedbacks revealed that 12% contained incorrect
suggestions, and 6% exhibited hallucinations.

These studies underscore the challenges in ensuring the accuracy and reliability of LLM-
generated feedback. Although the proportion of issues in feedback (ranging from 6% to 33%)
may appear small, in the context of education, even a small rate of misleading feedback
can negatively affect students’ learning, leading to misunderstandings, frustration, and loss
of trust in the system. While these studies focus on evaluating individual models and
their ability to generate feedback, our research goes further by conducting a systematic
comparison of multiple LLMs.

2



Assessing Large Language Models for Automated Feedback Generation

Challenges in Evaluating Reasoning with LLMs. Detecting reasoning mistakes
in student code requires understanding the underlying logic and intent of the solution,
going beyond surface-level syntax or test failures. Recent research has shown that LLMs
generally perform poorly in identifying logical mistakes compared to their ability to correct
them. Tyen et al. (2024) demonstrated that several LLMs struggle with logical deduction,
arithmetic expressions, and word-ordering tasks, often failing to pinpoint where reasoning
mistakes occur. Similarly, Xia et al. (2024) observed similar limitations in mathematical
reasoning tasks, where LLMs frequently misinterpret problem-solving logic.

3. Benchmark

We created a benchmark dataset based on real-world student submissions to evaluate LLMs’
performance in providing feedback for programming tasks. This dataset comprises 45
Python solutions to 5 introductory programming assignments collected from an online sys-
tem used in programming courses. These 45 solutions were submitted by 5 students, with
some students providing multiple solutions for the same programming assignment. This
reflects a range of solution attempts and iterative improvements, capturing diverse solu-
tion strategies and common errors. Each assignment was designed to test foundational
programming concepts such as loops, conditionals, and functions.

Dataset Construction. The dataset was generated from student submissions to an
automated grading system, which determined the correctness of each solution based on
problem requirements and test cases. The students’ solutions were written in Python
3.11. Table 1 shows an overview of the dataset collected. This dataset was used to assess
LLMs’ feedback and evaluate their ability to identify mistakes and suggest improvements
and corrections.

Table 1: Distribution of students’ solutions across assignments and correctness based on
the submission system.

Assignment Total Solutions Correct Incorrect

Area of a Circle 14 05 09
Simple Sum 06 04 02
T-Shirts 10 02 08
Huaauhahhuahau 08 04 04
Grandpa’s Balance 07 04 03

Total 45 19 26

Feedback Generation. Feedback was generated using four LLMs: GPT-4o (version:
2024-08-06), GPT-4o-mini (version: 2024-07-18), GPT-4-Turbo (version: 2024-04-09), and
Gemini-1.5-pro. Each model was prompted using the same template to ensure consistency
in feedback generation (see the prompt template in Figure 1). The models were executed
with a temperature setting of 0 (zero) to try to ensure consistent output results. The prompt
explicitly instructed the models to act as programming teachers, assess the correctness of

3



Silva Costa

the code, and generate JSON-formatted feedback. Feedback included a binary indicator
(is correct) and a list of hints, with each hint specifying:

• The line number of the issue,

• The code line containing the issue,

• A concise explanation of the problem.

Figure 1: Prompt used to ask for feedback.

Feedback Annotation. Two teaching assistants annotated the feedback generated by
the models. The feedback was assessed in two stages:

1. Automatic Annotation: The correctness of the solutions was determined using the
results from the automated submission system.

2. Human Annotation: Teaching assistants evaluated the feedback and organized it
into five categories. Disagreement cases were resolved through discussion and consen-
sus.

Each hint was categorized individually, following an adaptation of the framework by
Hellas et al. (2023). In our categorization, any error in the hint message makes it incorrect,
even if other parts are accurate. The categories are defined as follows:

4



Assessing Large Language Models for Automated Feedback Generation

• Accurate and Complete (AC): The feedback correctly identifies the appropriate
line of code and explains the issue and/or how to resolve it. This is considered the ideal
type of feedback, as it effectively supports students in identifying and understanding
their mistakes.

• Accurate Line Only (ALO): The feedback correctly identifies the line containing
the issue but provides an incorrect or misleading explanation of the problem. Unlike
False Positive (FP), the line identified does indeed contain a mistake, but the model
misunderstands the nature of the issue.

• Accurate Issue Only (AIO): The feedback describes the right issue but does not
indicate the correct line of code. This misalignment can confuse students, as the
explanation may not appear to relate to the line they are working on.

• False Positive (FP): The feedback incorrectly identifies an issue where none exists.
There is no actual error on the identified line, and the feedback message is entirely
fake (hallucinated). This type of feedback can undermine student trust in the system.

• Misleading Suggestions (MS): The feedback points out a real error in the code,
but both the line and the suggested fix are incorrect. While related to AIO, MS adds
an additional layer of confusion by including a flawed or misleading resolution.

Table 2 displays the categorization of the hints produced by each model, indicating the
frequency of each category. The analysis focuses only on true negatives, which means that
the dataset includes only the feedback for solutions that the models accurately identified as
incorrect.

Table 2: Categorization of hints generated by each model.

Model
Categories

AC ALO AIO FP MS Total

GPT-4o-mini 36 02 06 03 02 49
GPT-4o 28 10 03 08 00 49
GPT-4-Turbo 33 06 02 03 00 44
Gemini-1.5-pro 23 09 07 09 00 48

Total 120 27 18 23 02 190

4. Evaluation of Model Performance

To assess the ability of LLMs to evaluate student code, we use our benchmark dataset to
investigate two key research questions:

RQ1. How accurately do LLMs determine whether a student’s solution fulfills the require-
ments of a programming task?

RQ2. What are the common types of errors in student code that LLMs fail to identify?

5



Silva Costa

4.1. Results for RQ1: Accuracy in Correctness Evaluation

The models performed similarly in evaluating the correctness of students’ code (Figure 2
shows a visualization of the confusion matrices for each model). The accuracy metrics
for each model are as follows: GPT-4o-mini: 84.44%, Gemini-1.5-pro: 86.67%, GPT-4o:
88.89%, and GPT-4-Turbo: 88.89%.

GPT-4o-mini misclassified seven correct solutions as incorrect. These errors were
distributed across three tasks: four from the Simple Sum assignment, two from the T-shirt
assignment, and one fromGrandpa’s Balance. In the Simple Sum task, the model incorrectly
claimed the solutions did not meet the required output format, despite their correctness.
Similarly, in the T-shirt and Grandpa’s Balance assignments, the model misinterpreted the
students’ logical reasoning, falsely identifying errors in the code.

GPT-4o exhibited similar misclassification patterns, with five correct solutions iden-
tified as incorrect. These were a subset of the errors made by GPT-4o-mini, including
three Simple Sum solutions and two T-shirt solutions. GPT-4o successfully identified that
one solution from Simple Sum met the output requirements, which GPT-4o-mini failed to
recognize. However, the model also struggled to interpret logical reasoning in the T-shirt
task.

GPT-4-Turbo demonstrated comparable accuracy to GPT-4o, misclassifying four cor-
rect solutions as incorrect. It improved over GPT-4o-mini in the Simple Sum assignment,
reducing errors to two cases. However, like the others, it struggled with the logical reasoning
in two T-shirt assignment solutions.

Gemini-1.5-pro exhibited a similar pattern of errors as the GPT models. The mis-
classified solutions were a subset of those incorrectly labeled by GPT-4o and GPT-4o-mini.
Gemini and GPT-4-Turbo were the only ones to classify an incorrect solution as correct
incorrectly.

GPT-4-TurnoGPT-4oGPT-4o-mini Gemini-1.5-Pro

Figure 2: Confusion matrices for GPT-4o, GPT-4o-mini, and GPT-4-Turbo, showing the
models’ performance in classifying correct and incorrect student solutions.

4.2. Results for RQ2: Error Detection and Feedback Quality

To evaluate the quality of feedback generated by the models, we categorized hints associated
with correctly identified incorrect solutions into five categories: Accurate and Complete

6



Assessing Large Language Models for Automated Feedback Generation

(AC), Accurate Line Only (ALO), Accurate Issue Only (AIO), False Positive (FP), and
Misleading Suggestions (MS). Figure 3 illustrates the distribution of feedback categories
across models.

Figure 3: Comparison of the frequency of feedback categories generated by each model.

GPT-4o-mini generated the highest number of Accurate and Complete hints, followed
closely by GPT-4-Turbo. These results indicate the strength of these models in providing
both the correct line and the proper explanation of the mistake. Furthermore, GPT-4o and
Gemini-1.5-pro generated more Accurate Line Only hints, suggesting a tendency to identify
the line containing the issue but not adequately explaining the problem or assisting the
student in fixing it. Across all models, the frequency of False Positives was relatively low,
occurring in approximately 12% of cases. These errors were more frequent in Gemini-1.5-pro
and GPT-4o. Similarly, Misleading Suggestions were rare, with only two instances reported
for GPT-4o-mini.

5. Limitations and Future Directions

This study has potential limitations. First, the benchmark dataset comprises 45 solutions
from 5 students across five programming assignments. Although it captures diverse solution
strategies and common errors, the dataset’s small size and limited participant pool restrict
the generalizability of our findings. Furthermore, imbalances in the number of submissions
across assignments may introduce bias in the evaluation results. We plan to expand the
dataset with more participants, diverse assignments, and augmented data to address these
issues.

Second, the prompt design may have impacted the models’ performance. In future
studies, we will explore alternative prompt designs, such as separating tasks into individual
prompts or using dynamic, task-specific prompts. This could provide a more accurate
evaluation of LLM capabilities.

Finally, our findings are based on the evaluation of four specific LLMs. While these
models represent state-of-the-art capabilities, the results may not generalize to other mod-

7



Silva Costa

els or future iterations. Additionally, while human annotations were validated to ensure
consistency, they may still introduce an element of subjectivity.

6. Discussion and Conclusion

In this work, we evaluate the ability of large language models (LLMs) to provide feed-
back on programming tasks. We introduce a benchmark dataset of student submissions in
introductory programming courses and use it to analyze and compare the performance of
GPT-4o, GPT-4o-mini, GPT-4-Turbo, and Gemini-1.5-pro. Our study categorizes feedback
generated by these models into five categories, highlighting their strengths and limitations
in providing proper feedback. The results show that while these LLMs are effective in gen-
erating accurate feedback in many cases, they also exhibit significant challenges, including
hallucinated errors, misleading suggestions, and struggles to interpret student logic.

Overall, 63% of the feedback hints generated by the models were totally correct, meaning
they accurately identified the problematic line and provided an appropriate explanation.
However, 37% of the feedback contained some issues, such as pointing to the wrong line,
providing an incorrect hint message, or hallucinating non-existent errors.

Our findings reveal that although LLMs perform well in detecting syntactic and surface-
level issues, they often fail to capture deeper reasoning mistakes in student code. Addi-
tionally, the frequency of hallucinations and false positives highlights the need for further
refinement of these models to minimize their risks in educational settings. The benchmark,
prompts, and supplementary materials can be found at: https://github.com/priscylla/
Assessing-LMMs-for-Feedback-Generation.

References

Imen Azaiz, Natalie Kiesler, and Sven Strickroth. Feedback-generation for programming ex-
ercises with gpt-4. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1, ITiCSE 2024, page 31–37, New York, NY, USA, 2024. Associ-
ation for Computing Machinery. ISBN 9798400706004. doi: 10.1145/3649217.3653594.
URL https://doi.org/10.1145/3649217.3653594.

Galina Deeva, Daria Bogdanova, Estefańıa Serral, Monique Snoeck, and Jochen De Weerdt.
A review of automated feedback systems for learners: Classification framework, challenges
and opportunities. Computers & Education, 162:104094, 2021. ISSN 0360-1315. doi:
https://doi.org/10.1016/j.compedu.2020.104094. URL https://www.sciencedirect.

com/science/article/pii/S036013152030292X.

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and Juha
Sorva. Exploring the responses of large language models to beginner programmers’ help
requests. In Proceedings of the 2023 ACM Conference on International Computing Educa-
tion Research - Volume 1, ICER ’23, page 93–105, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450399760. doi: 10.1145/3568813.3600139. URL
https://doi.org/10.1145/3568813.3600139.

8

https://github.com/priscylla/Assessing-LMMs-for-Feedback-Generation
https://github.com/priscylla/Assessing-LMMs-for-Feedback-Generation
https://doi.org/10.1145/3649217.3653594
https://www.sciencedirect.com/science/article/pii/S036013152030292X
https://www.sciencedirect.com/science/article/pii/S036013152030292X
https://doi.org/10.1145/3568813.3600139


Assessing Large Language Models for Automated Feedback Generation

Sven Jacobs and Steffen Jaschke. Evaluating the application of large language models to gen-
erate feedback in programming education. In 2024 IEEE Global Engineering Education
Conference (EDUCON), pages 1–5, 2024. doi: 10.1109/EDUCON60312.2024.10578838.

Marcin Jukiewicz. The future of grading programming assignments in education: The role
of chatgpt in automating the assessment and feedback process. Thinking Skills and Cre-
ativity, 52:101522, 2024. ISSN 1871-1871. doi: https://doi.org/10.1016/j.tsc.2024.101522.
URL https://www.sciencedirect.com/science/article/pii/S1871187124000609.

Natalie Kiesler, Dominic Lohr, and Hieke Keuning. Exploring the potential of large lan-
guage models to generate formative programming feedback. In 2023 IEEE Frontiers in
Education Conference (FIE), pages 1–5, 2023. doi: 10.1109/FIE58773.2023.10343457.

Uwe Maier and Christian Klotz. Personalized feedback in digital learning environments:
Classification framework and literature review. Computers and Education: Artifi-
cial Intelligence, 3:100080, 2022. ISSN 2666-920X. doi: https://doi.org/10.1016/
j.caeai.2022.100080. URL https://www.sciencedirect.com/science/article/pii/

S2666920X22000352.

M. Pankiewicz and R. S. Baker. Large language models (gpt) for automating feedback on
programming assignments. In J.-L. Shin, A. Kashihara, W. Chen, and H. Ogata, edi-
tors, 31st International Conference on Computers in Education Conference Proceedings,
Volume I, pages 68–77. Asia-Pacific Society for Computers in Education (APSCE), 2023.

Lianne Roest, Hieke Keuning, and Johan Jeuring. Next-step hint generation for introductory
programming using large language models. In Proceedings of the 26th Australasian Com-
puting Education Conference, ACE ’24, page 144–153, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. ISBN 9798400716195. doi: 10.1145/3636243.3636259.
URL https://doi.org/10.1145/3636243.3636259.

Priscylla Silva, Evandro Costa, and Joseana Régis de Araújo. An adaptive approach to
provide feedback for students in programming problem solving. In Andre Coy, Yugo
Hayashi, and Maiga Chang, editors, Intelligent Tutoring Systems, pages 14–23, Cham,
2019. Springer International Publishing. ISBN 978-3-030-22244-4.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot
find reasoning errors, but can correct them given the error location. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 13894–13908, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.826. URL
https://aclanthology.org/2024.findings-acl.826.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathe-
matical reasoning beyond accuracy. arXiv preprint arXiv:2404.05692, 2024.

9

https://www.sciencedirect.com/science/article/pii/S1871187124000609
https://www.sciencedirect.com/science/article/pii/S2666920X22000352
https://www.sciencedirect.com/science/article/pii/S2666920X22000352
https://doi.org/10.1145/3636243.3636259
https://aclanthology.org/2024.findings-acl.826

	Introduction
	Related Work
	Benchmark
	Evaluation of Model Performance
	Results for RQ1: Accuracy in Correctness Evaluation
	Results for RQ2: Error Detection and Feedback Quality

	Limitations and Future Directions
	Discussion and Conclusion

