
Assessing Large Language Models for
Automated Feedback Generation in

Learning Programming Problem Solving
Priscylla Silva 1.3 Evandro Costa 2

1Universidade de São Paulo 2Universidade Federal de Alagoas 3Instituto Federal de Alagas

Abstract

Providing effective feedback is important for student learning in programming problem-

solving. In this sense, Large Language Models (LLMs) have emerged as potential tools to

automate feedback generation. However, their reliability and ability to identify reasoning er-

rors in student code remain not well understood. This study evaluates the performance of

four LLMs (GPT-4o, GPT-4omini, GPT-4-Turbo, and Gemini-1.5-pro) on a benchmark dataset

of 45 student solutions. We assessed the models’ capacity to provide accurate and insight-

ful feedback, particularly in identifying reasoning mistakes. Our analysis reveals that 63% of

feedback hints were accurate and complete, while 37% contained mistakes, including incor-

rect line identification, flawed explanations, or hallucinated issues. These findings highlight

the potential and limitations of LLMs in programming education and underscore the need for

improvements to enhance reliability and minimize risks in educational applications.

Context

Providing timely and accurate feedback is crucial for learning programming.

Large class sizes make it difficult for instructors to give individualized feedback.

Large Language Models (LLMs) offer a promising alternative by generating

natural-language feedback tailored to students’ needs, but may struggle with reasoning

mistakes and hallucinated feedback.

Goals

In this work, we systematically evaluate four LLMs to assess their ability to generate accurate

and meaningful feedback for programming assignments.

Questions

How accurately do LLMs determine whether a student’s solution fulfills the

requirements of a programming task?

What are the common types of errors in student code that LLMs fail to identify?

How well do different LLMs perform in identifying mistakes/bugs and generating

useful feedback for student code?

Approach & Methodology

LLMs Evaluated

GPT-4o, GPT-4o-mini, GPT-4-Turbo, and Gemini-1.5-Pro.

Each model was tested on 45 student solutions across 5 programming assignments.

Evaluation Metrics: Accuracy in identifying incorrect solutions and quality of feedback.

Dataset

Student solutions collected from introductory programming courses.

45 solutions were submitted by 5 students, with some students providing multiple

solutions for the same programming assignment.

Assignment Total Solutions Correct Incorrect

Area of a Circle 14 05 09

Simple Sum 06 04 02

T-Shirts 10 02 08

Huaauhahhuahau 08 04 04

Grandpa’s Balance 07 04 03

Total 45 19 26

Feedback

The prompt explicitly instructed the models to act as programming teachers, assess the cor-

rectness of the code, and generate JSON-formatted feedback. Feedback included a binary

indicator (is_correct) and a list of hints, with each hint specifying:

The line number of the issue,

The code line containing the issue,

A concise explanation of the problem.

More Information

Evaluation Setup

Two teaching assistants categorized feedback into:

Accurate and Complete (AC): The feedback correctly identifies the appropriate line of

code and explains the issue and/or how to resolve it. This is considered the ideal type of

feedback, as it effectively supports students in identifying and understanding their

mistakes.

Accurate Line Only (ALO): The feedback correctly identifies the line containing the issue

but provides an incorrect or misleading explanation of the problem. Unlike False Positive

(FP), the line identified does indeed contain a mistake, but the model misunderstands the

nature of the issue.

Accurate Issue Only (AIO): The feedback describes the right issue but does not indicate

the correct line of code. This misalignment can confuse students, as the explanation may

not appear to relate to the line they are working on.

False Positive (FP): The feedback incorrectly identifies an issue where none exists. There

is no actual error on the identified line, and the feedback message is entirely fake

(hallucinated). This type of feedback can undermine student trust in the system.

Misleading Suggestions (MS): The feedback points out a real error in the code, but both

the line and the suggested fix are incorrect. While related to AIO, MS adds an additional

layer of confusion by including a flawed or misleading resolution.

Key Findings & Results

63% of the feedback hints generated by the models were totally correct, meaning they

accurately identified the problematic line and provided an appropriate explanation.

37% of the feedback contained some issues, such as pointing to the wrong line, providing

an incorrect hint message, or hallucinating non-existent errors.

Our findings reveal that although LLMs perform well in detecting syntactic and

surface-level issues, they often fail to capture deeper reasoning mistakes in student code.

Table 1. Categorization of hints generated by each model.

Model
Categories

AC ALO AIO FP MS Total

GPT-4o-mini 36 02 06 03 02 49

GPT-4o 28 10 03 08 00 49

GPT-4-Turbo 33 06 02 03 00 44

Gemini-1.5-pro 23 09 07 09 00 48

Total 120 27 18 23 02 190

GPT-4-TurnoGPT-4oGPT-4o-mini Gemini-1.5-Pro

Limitations & FutureWork

Limited dataset (45 solutions from 5 students) → Expand benchmark

Prompt tuning → try different prompting strategies

Conclusion

LLMs show potential for automated programming feedback but are prone to errors

Models struggle with reasoning-based errors and hallucinate incorrect feedback

March 2025 AAAI2025 - iRAISE Innovation and Responsibility in AI-Supported Education priscylla.silva@usp.br

mailto:pd2567@nyu.edu

